The Crystal and Molecular Structure of 2-Oxo-2-phenyl-4,4-dimethyl-1,3,2-dioxaphosphorinane

By R.C.G.Killean*, J. L. Lawrence* and I. M. Magennis \dagger
The University, St. Andrews, Scotland

(Received 24 September 1969)
Crystals of 2-oxo-2-phenyl-4,4-dimethyl-1,3,2-dioxaphosphorinane are monoclinic, space group $P 2_{1}$, with $Z=2$. Unit-cell dimensions are $a=5 \cdot 82 \pm 0 \cdot 02, b=10 \cdot 23 \pm 0 \cdot 03, c=9 \cdot 70 \pm 0 \cdot 02, \beta=99 \cdot 0^{\circ} \pm 5^{\prime}$. The structure has been solved from a three-dimensional Patterson synthesis and refined using an absolute weighting scheme. The final R index was 12% compared with a theoretical R index of 11%. The phosphorinane ring has a chair conformation with the phenyl group lying in the axial position.

Introduction

Although conformations of six-membered rings have been widely studied in the last ten years and reviewed recently (Anderson, 1965), the conformation of sixmembered phosphorus heterocyclics has aroused further interest (Hargis \& Bentrude, 1968). In studying the nuclear magnetic resonance spectra and resulting coupling constants of phosphorus heterocyclics, some interesting results have been obtained and in the hope of explaining these, crystal structure analysis of some of these compounds is being undertaken. This paper describes one such analysis.

Experimental

Thirty-nine grams of phenylphosphoryl chloride in 100 ml toluene were added slowly to $20 \cdot 8 \mathrm{~g}$ of 2,2 -di-methylpropane-1,3-diol and 41 g of trimethylamine in 300 ml toluene at $5^{\circ} \mathrm{C}$. The mixture was heated to $100^{\circ} \mathrm{C}$ for one hour and the amine salt filtered off. During evaporation of the solvent, the product crystallized. The compound was recrystallized from benzene.

Crystal data

2-Oxo-2-phenyl-4,4-dimethyl-1,3,2-dioxaphosphorinane. Molecular formula $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}$, m.p. $104^{\circ} \mathrm{C}$, M.W. 226-22.

Monoclinic
$a=5 \cdot 82 \pm 0.02, b=10 \cdot 23 \pm 0.03, c=9.70 \pm 0.02 \AA$
$\beta=99 \cdot 0^{\circ} \pm 5^{\prime}$
$V=570 \cdot 42 \AA^{3}$
$D_{x}=1.32 \pm 0.02 \mathrm{~g} . \mathrm{cm}^{-3}$
$D_{o}=1.30 \pm 0.05 \mathrm{g.cm}^{-3}$
$Z=2$
$\mu($ Mo $K \alpha)=0.23 \mathrm{~cm}^{-1}$
Absent spectra: $0 k 0$ when k is odd Space group: $P 2_{1}$ (or $P 2_{1} / m$)

[^0]Two well formed crystals of approximate dimensions $0.5 \times 0.2 \times 0.1 \mathrm{~mm}$ were used, one mounted about the b axis and the other about the c axis. Unit-cell dimensions were obtained from rotation and zero-layer Weissenberg photographs with copper radiation at room temperature.

Equi-inclination data were collected for $k=0 \rightarrow 9$ on a Hilger \& Watts linear diffractometer with the crystal mounted about the b axis. The balanced filter technique was used with Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$) and a 30 sec oscillation motor. The data were reduced to structure factors by correction for Lorentz and polarization effects in the usual way. No corrections for absorption were made. The total number of reflexions recorded with net counts greater than zero was 635 .

Structure determination

A three-dimensional unsharpened Patterson function showed only two peaks about $1.5 \AA$ from the origin and not four as expected from the approximately tetrahedral $\mathrm{P}\left(\mathrm{O}_{3}-\mathrm{C}\right)$ system. These peaks were identified as vectors between the phosphorus atom and the surrounding four atoms, both being double peaks due to vectors on either side of the mirror plane $y=0$. The corresponding vectors between these four atoms were also identified and the position of the phosphorus atom was obtained from the Harker section $y=\frac{1}{2}$. At this stage the possibility of space group $P 2_{1} / m$ could be excluded.

A structure factor calculation based on these coordinates in space group $P 2_{1}$ gave a reliability factor of 0.40 and from the resulting Fourier summation the positions of the carbon atoms were found. These indicated a chair conformation for the phosphorinane ring and an axial position for the phenyl group. Leastsquares refinement using a Hughes weighting scheme with isotropic temperature factors reduced R to 0.15 .

Refinement

Further refinement was carried out using an absolute weighting scheme (Killean \& Lawrence, 1969). This
gives a weight $w(\mathbf{h})$ for each structure factor $F(\mathbf{h})$ having a variance $\sigma^{2}(\mathbf{h})$ of
$\left.w(\mathbf{h})=\frac{1}{\sigma^{2}(\mathbf{h})}=\left[\frac{K}{4 \mathrm{Lp}} \frac{I+B}{I-B}+c^{2}|F(\mathbf{h})|^{2}+\left.k^{2}\langle | F(\mathbf{h})\right|^{2}\right\rangle\right]^{-1}$
where K is a scale factor, I is the integrated peak count, B is the background count, c is the fractional error in $|F(\mathbf{h})|$ and k is the average fractional error in the scattering curves due to bonding electrons.

Since each integrated reflexion was measured for only 15 sec , the variance of $|F(\mathrm{~h})|$ due to counting statistics was fairly large and, assuming values of c^{2} and k^{2} of 0.0025 and 0.0010 respectively, the theoretically expected R index (Killean, 1967) given by

$$
R=\left(\frac{2}{\pi}\right) \frac{\sum_{\mathbf{h}} \sigma(\mathbf{h})}{\sum_{\mathbf{h}}|F(\mathbf{h})|}
$$

was $0 \cdot 11$.
The structure was refined using this weighting scheme with the assumed values of c and k and gave a final R index of 0.134 and a value of

$$
\frac{\sum_{\mathbf{h}} w(\mathbf{h})|\Delta(\mathbf{h})|^{2}}{(m-n)}
$$

where m and n represent the number of observations and variables respectively, of $1 \cdot 24$.

Corrected values of c and k were then calculated using the G index (Kitaigorodski, 1957) defined as

$$
\begin{aligned}
G^{2} & =\frac{\sum_{\mathbf{h}}|\Delta(\mathbf{h})|^{2}}{\sum_{\mathbf{h}}|F(\mathbf{h})|^{2}} \\
& =\frac{\sum_{\mathbf{h}} \sigma(\mathbf{h})^{2}}{\sum_{\mathbf{h}}|F(\mathbf{h})|^{2}} \\
& =S^{2}+c^{2}+k^{2} .
\end{aligned}
$$

At this point of refinement, $G^{2}=0.0200$ and $S^{2}=0.0153$.

$$
\text { Various values of } \begin{gathered}
c^{2}+k^{2}=0.0047 \\
\frac{\sum_{\mathbf{h}} w(\mathbf{h})|\Delta(\mathbf{h})|^{2}}{(m-n)}
\end{gathered}
$$

were then calculated for values of c and k subject to $c^{2}+k^{2}=0.0047$ and the minimum value occurred when $c^{2}=0.0027$ and $k^{2}=0.0020$.

Further refinement using this new weighting scheme gave a final R index of 0.119 and a final value of

$$
\frac{\sum_{\mathbf{h}} w(\mathbf{h})|\Delta(\mathbf{h})|^{2}}{(m-n)}
$$

of 0.99 . In the final refinement only those reflexions for which $|F(\mathbf{h})|>3 \sigma(\mathbf{h})$ were included.

As can be seen, the final R index agrees with the theoretically expected value. Obviously, this value could have been reduced by increasing the time taken to measure each reflexion but it was felt that, using the 30 sec motor and thus obtaining an R index of $0 \cdot 11$, sufficient accuracy in the positional and thermal parameters of the atoms would be achieved to determine the stereochemistry unambiguously. The final value of

$$
\frac{\sum_{\mathbf{h}} w(\mathbf{h})|\Delta(\mathbf{h})|^{2}}{(m-n)}
$$

was very close to its theoretical value of unity, justifying the choice of weighting scheme. The final value of k of 0.04 suggests about a 4% error in the form factors due to bonding.

No clear evidence of hydrogen atoms was found in a difference synthesis which, in view of the large R index obtained, was not surprising.

Table 1 gives the final coordinates and their standard deviations, Table 2 the anisotropic temperature parameters and Table 3 the structure factors. Large discrepancies between the observed and calculated structure factors occurred for two reflexions 001 and 002 ; the diffracted beam was almost certainly obscured by the back-stop during the measurement of the 001 intensity. For all other reflexions the discrepancy was less than three times the standard deviation.

Table 1. Final coordinates and standard deviations

	x / a	y / b	z/c
P	$0 \cdot 2320$ (10)	-0.0008 (7)	$0 \cdot 1624$ (6)
$\mathrm{O}(1)$	0.0721 (23)	0.0941 (14)	0.0715 (13)
$\mathrm{O}(2)$	$0 \cdot 1067$ (32)	-0.0937 (18)	$0 \cdot 2392$ (14)
$\mathrm{O}(3)$	$0 \cdot 3766$ (24)	-0.0736 (15)	0.0613 (13)
C(1)	$0 \cdot 1535$ (40)	$0 \cdot 1631$ (21)	-0.0393 (23)
C (2)	$0 \cdot 2538$ (44)	0.0753 (23)	-0.1407 (21)
C(3)	$0 \cdot 4560$ (33)	-0.0008 (30)	-0.0519 (20)
C(4)	0.0696 (45)	-0.0213 (25)	-0.2062 (23)
C(5)	0.3702 (47)	$0 \cdot 1519$ (29)	-0.2492 (24)
C(6)	$0 \cdot 4407$ (38)	$0 \cdot 0963$ (19)	$0 \cdot 2802$ (17)
C(7)	$0 \cdot 3469$ (42)	$0 \cdot 2142$ (19)	$0 \cdot 3275$ (22)
C(8)	0.4895 (52)	$0 \cdot 2838$ (26)	$0 \cdot 4224$ (21)
C(9)	0.7074 (44)	$0 \cdot 2376$ (30)	0.4727 (21)
$\mathrm{C}(10)$	0.7974 (46)	$0 \cdot 1234$ (24)	0.4221 (18)
C(11)	$0 \cdot 6582$ (37)	$0 \cdot 0548$ (23)	$0 \cdot 3198$ (19)

Molecular geometry

Fig. 1 shows the projection of the structure down the a axis, showing the labelling used. Bond lengths and valency angles are listed in Tables 4 and 5.

In the solid state the phosphorinane ring has a chair conformation, slightly flattened compared with the cyclohexanering. The arrangement around the phosphorus atom is approximately tetrahedral with the phenyl group and phosphorus-oxygen double bond lying in the axial and equatorial positions respectively. The methoxy and phenoxy derivatives of the compound

Table 2. Final anisotropic temperature factors $\times 10^{5}$ defined as $\exp \left[-\left(B_{i j} h_{i} h_{j}\right)\right]$

	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
\mathbf{P}	2261	896	915	-678	-26	-296
$\mathrm{O}(1)$	2022	892	1241	-285	-202	-315
$\mathrm{O}(2)$	6843	1334	943	380	1162	-488
$\mathrm{O}(3)$	2905	1135	1071	677	85	-149
$\mathrm{C}(1)$	4045	596	1266	133	-950	599
$\mathrm{C}(2)$	5157	857	756	-37	-223	1352
$\mathrm{C}(3)$	2067	1219	1357	-692	1152	-2363
$\mathrm{C}(4)$	5698	933	1307	-1228	71	619
$\mathrm{C}(5)$	5109	1871	1113	207	1820	-2368
$\mathrm{C}(6)$	3869	799	302	-273	1541	-263
$\mathrm{C}(7)$	5600	578	1253	304	3822	-252
$\mathrm{C}(8)$	8081	1301	610	-1515	2313	-3376
$\mathrm{C}(9)$	4192	2326	587	508	-1217	-2957
$\mathrm{C}(10)$	6545	1231	329	-784	542	-2832
$\mathrm{C}(11)$	2356	1543	882	1428	126	1111

seem to indicate that this is the sterically preferred conformation (Edmundson, 1964; Geise, 1967).

Fig.1. Projection of the structure down the a axis, showing the labelling used.

Table 3. Measured and calculated values of the structure factors, $\times 100$, for reflexions having $|F(\mathbf{h})|>3 \sigma(\mathbf{h})$

The first figure for reflexion 208 should read 694 instead of 4694.

Table 4. Final bond lengths and standard deviations

Table 4 (cont.)

\quad Bond	Length
$\mathrm{P} — — \mathrm{O}(3)$	$1.57(2)$
$\mathrm{P}-\mathrm{C}(6)$	$1.82(2)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.43(2)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.46(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.51(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.55(3)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.52(4)$
$\mathrm{C}(2)-\mathrm{C}(5)$	$1.55(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.43(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.34(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.37(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.40(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.37(3)$
$\mathrm{C}(6)-\mathrm{C}(11)$	$1.33(3)$

Table 5. Intermolecular bond angles and standard deviations

	Angle
	Ang
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$113 \cdot 5(0 \cdot 9)^{\circ}$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	$106 \cdot 2(0 \cdot 8)$
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	$111 \cdot 4(0 \cdot 9)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(6)$	$107 \cdot 6(0 \cdot 9)$
$\mathrm{O}(2)-\mathrm{P}-\mathrm{C}(6)$	$111 \cdot 7(0 \cdot 9)$
$\mathrm{O}(3)-\mathrm{P}-\mathrm{C}(6)$	$106 \cdot 5(0 \cdot 9)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$113 \cdot(1 \cdot 7)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$111 \cdot 8(1 \cdot 5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$105 \cdot 8(1 \cdot 8)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$109 \cdot 8(2 \cdot 0)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	$113 \cdot 2(1 \cdot 9)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	$109 \cdot 8(2 \cdot 0)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	$104 \cdot 8(2 \cdot 0)$
$\mathrm{P}-\mathrm{C}(6)-\mathrm{C}(7)$	$114 \cdot 3(1 \cdot 7)$
$\mathrm{P}-\mathrm{C}(6)-\mathrm{C}(11)$	$121 \cdot 0(1 \cdot 6)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$116 \cdot 2(2 \cdot 0)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120 \cdot 1(2 \cdot 0)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$122 \cdot 6(2 \cdot 0)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$118 \cdot 2(2 \cdot 0)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	$124 \cdot 7(2 \cdot 0)$
$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(1)$	$120 \cdot 4(1 \cdot 5)$
$\mathrm{P}-\mathrm{O}(3)-\mathrm{C}(3)$	$119 \cdot 3(1 \cdot 5)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$118 \cdot 0(2 \cdot 0)$
$\mathrm{C}(4)-\mathrm{C}(2)-\mathrm{C}(5)$	$113 \cdot 5(2 \cdot 0)$

The single-bonded phosphorus-oxygen distance (mean $1.55 \AA$) and double-bonded phosphorus-oxygen distance ($1.47 \AA$) agree with those found in several structures. Kraut \& Jensen (1963) allot values of 1.56 and $1.49 \AA$ respectively to these bonds. They have also observed that oxygen-phosphorus-oxygen angles increase with decreasing oxygen-phosphorus distances, and it can be seen that this confirmed by the present results. The P-C distance of $1.82 \pm 0.02 \AA$ compares satisfactorily with standard P-C distances (1.87 ± 0.02 \AA), while, in the phosphorinane ring, the $\mathrm{C}-\mathrm{C}$ distances are the expected value (mean $1.53 \AA$) and the C - O distances (mean $1.45 \AA$) are not significantly different from the usually accepted value for this bond, $1.43 \AA$. Large valency angles for oxygen atoms have been found in organic phosphates (Svetich \& Caughlan, 1965) and this is the case in the present structure (mean value 120°. The carbon valency angles are normal except for the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle in the heterocyclic ring which is unusually small (105°).

Bond distances in the benzene ring give an average value of $1.37 \AA$ and bond angles an average value of 120°.

References

Anderson, J. E. (1965). Quart. Rev. 19, 426.
Edmundson, R. S. (1964). Tetrahedron, 20, 2781. Geise, H. J. (1967). Rec. Trav. Chim. Pays-Bas, 86, 362.
Hargis, J. H. \& Bentrude, W. E. (1962). Tetrahedron Letters, 51, 5365.
Killean, R. C. G. (1967). Acta Cryst. 23, 1109.
Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 1750.
Kitaigorodski, A. I. (1957). Theory of Crystal Structure Analysis. Translation 1961, p. 249. New York: Heywood.
Kraut, J. \& Jensen, L. H. (1963). Acta Cryst. 16, 79.
Svetich, G. W. \& Caughlan, C. N. (1965). Acta Cryst. 19, 645.

Acta Cryst. (1971). B27, 192

The Crystal and Molecular Structure of Dichlorodiaquobis(dicyandiamide)copper(II)

ByA. Chiesi, L. Coghi, A. Mangia, M. Nardelli and G. Pelizzi
Istituto di Chimica Generale, Università di Parma, Parma, Italy

(Received 9 February 1970)
Crystals of $\mathrm{Cu}\left(\mathrm{OH}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{4} \mathrm{H}_{4}\right)_{2} \mathrm{Cl}_{2}$ are triclinic ($P \overline{1}$): $a=5.42$ (1), $b=6.45$ (1), $c=9.31$ (1) $\AA, \alpha=74.5$ $(0.2), \beta=80 \cdot 4(0.3), \gamma=84 \cdot 7(0 \cdot 3)^{\circ}, Z=1$. The structure was solved and refined by means of three-dimensional Fourier methods (final $R=8.3 \%$). The $\mathrm{Cu}^{\mathrm{II}}$ atom lies on a centre of symmetry and is surrounded by a planar arrangement of two water molecules $(\mathrm{Cu}-\mathrm{O}=2.00 \AA$) and two nitrile nitrogen atoms $(\mathrm{Cu}-\mathrm{N}$ $=1.92 \AA$) from two dicyandiamide molecules. Two chlorine atoms, in the trans position with respect to that plane $(\mathrm{Cu}-\mathrm{Cl}=2.87 \AA)$, complete the coordination polyhedron to form an elongated octahedron.

The crystal structure of dichlorodiaquobis(dicyandiamide)copper(II) has been determined in order to study the behaviour of dicyandiamide in metal-coordination.

Dichlorodiaquobis(dicyandiamide)copper(II) occurs as blue-green triclinic platelets elongated along [100]. Cell constants, determined from Weissenberg and rota-

[^0]: * School of Physical Sciences.
 \dagger Department of Chemistry.

